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Aeroelastic Analysis of Modern Complex Wings

Using ENSAERO and NASTRAN

Abstract

A process is presented by which static aeroelastic analysis is performed using Euler

flow equations in conjunction with an advanced structural analysis tool, NASTRAN. The

process deals with the interfacing of two separate codes in the fields of computational

fluid dynamics (CFD) and computational structural dynamics (CSD). The process is

demonstrated successfully on an F/A-18 Stabilator (horizontal tail).

Introduction

With advanced subsonic transports entering into the transonic regime and fighter

aircraft being limited by aeroelastic phenomena, it is becoming increasingly important to

perform static and dynamic aeroelastic analysis using highly accurate fluid and structural

models. Recently, work has been done using advanced structural finite element wing-box

models coupled with Euler flow equations, but the structural finite element model is a

simple one.

There is a need to used highly detailed computation fluid dynamics (CFD) models

coupled with highly detailed computational structural dynamics (CSD) models. Methods

exist to solve each one independently, but not much work has been done coupling both

highly accurate CSD and CFD models.

This paper presents a process by which a highly detailed CSD model is coupled with

a highly detailed CFD model. The analysis of the CSD model is done using NASTRAN,

while analysis of the CFD model is done using Euler flow equations in NASTD (an in-

house McDonnell Douglas Aerospace East CFD code).

The aeroelastic process is broken down into the following steps:

1) Get CFD solution (possibly rigid steady state)

2) Calculate pressures at CFD grid points on the aerodynamic surface (Stabilator)

3) Map pressures to forces on structural grid

4) Obtain response of the structure
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5) Map displacements to the CFD grid points on the aerodynamic surface

6) Deform entire CFD grid

7) Repeat steps until convergence criteria is met

The above steps will sometimes be referred to later as one cycle. The above process

will be demonstrated on an F/A-18 Stabilator (horizontal tail).

The CFD grid topology of the F/A- 18 Stabilator can be seen in Figure 1, while a more

accurate view will be seen later. The grid was divided into two zones so that the CFD

portion of the process could be run using PVM to reduce computational time. The zone 1

grid contains the F/A-18 Stabilator, and the grid dimensions are 141 points around the

perimeter of the airfoil, 69 points spanwise, and 61 points in the normal direction. Zone 2

looks like a rectangular box whose dimensions are 31 points running streamwise, 69

points running spanwise, and 121 points in the normal direction. The complete grid

consists of more than 800,000 points, but the CFD code was run sequenced in each

direction to reduce computational time. The k index for the tip of the Stabilator is 44, and

the i index for the leading edge of the Stabilator is 71. Also, zone 2 matches with zone 1

as follows. The trailing edge of the Stabilator in zone 1 corresponds to i -- 1 and i = 141, j

= 1, and k = 1 to 69 ( k = 44 is the Stabilator tip ). These points are the same as i -- 1, j =

61, k = 1 to 69 in zone 2. A detailed grid is shown for the upper surface of the F/A- 18

Stabilator in Figure 2.

The finite element model of the F/A-18 Stabilator is shown in Figure 3. The model

consists of approximately 2000 nodes, 12000 d.o.f. This is the model used by

NASTRAN to form the stiffness matrix. In the next few paragraphs, we will describe

some of the steps involved in the aeroelastic process in more detail.

Step 1 involves getting a CFD solution. In this case, the rigid steady state solution

was used. Next, the pressures were calculated using the CFD solution on the CFD grid.

Step 3 maps the pressures on the CFD grid to forces on the structural grid. This

involves a pre-processed mapping. The mapping consists of the following information.

For each CFD point (i,k) on the surface of the Stabilator, the area on which the pressure

acts and unit normal is calculated. Now, the magnitude and direction of the force due to

unit pressure is known. The next step is to find a structural triangle that surrounds the

CFD point (i,k). This can be difficult due to the irregular grids of some structural models.

It is assumed that the structural grid is divided into an upper and lower surface

structural grids with overlapping points possibly occurring at the leading and trailing

edges and also at the tip. To find the structural triangle associated with the CFD grid

point, the 20 closest structural nodes are found using the upper or lower surface structural

grid depending on which surface the CFD point is located (Figure 4). Then all possible

triangles using the 20 points are formed. Next, the triangles that do not contain the CFD

point (i,k) as an interior point are eliminated (Figure 5). Then of the remaining triangles,



the largestvertexdistanceis measuredfor eachtriangle,wherevertexdistanceis the
distancebetweenthestructuralnodeandCFDpoint (i,k). Finally, thetrianglewith the
smallestlargestvertexdistanceis chosen.Thetriangularizationof thestructuraldomain
to theCFDdomainfor theF/A-18Stabilatorcanbeseenin Figure6. Now thatthe
structuraltriangleis known,theareacoordinatesof theCFDpoint areusedto distribute
theforceto thenodesof thestructuraltriangle.Sofor eachCFD point (i,k), thenecessary
weightfactorsanddestinationnodesareknownin thepre-processingstageaswell asthe
directionof theapplicationof the loads. As a sidenote,the20closestpointscanbe
changedto 25closestpointsdependingon thedensityof thestructuralgrid.

Step4 in theaeroelasticprocessis to solvethestructuralsystemof equations
[K]{ug}={f}. The role of NASTRAN is a limited one, in that its only job is to produce
the stiffness matrix in the pre-processing stage. In this example of the F/A-18 Stabilator,

a reduced stiffness matrix is used.

At this point of the process, the pressures on the CFD grid have been mapped to

forces on the structural grid, and the structural system of equations have been solved, and

now {Ug}, the displacements are known.

The next step is to deform the CFD grid according to the displacements on the

structural model. To interpolate the structural node displacements to displacements on

the grid points on the aerodynamic surface, a surface spline by Harder and Desmarais is

used. The remaining grid is deformed according to a cosine spacing function. The CFD

grid is deformed only in the z-direction (normal). The in-plane displacements are

neglected.

So to deform the surface grid, a surface spline technique was chosen. The surface

spline system of equations become [A] {c}={uspl}. The [A] matrix is dependent on the

coordinates of the spline points. Therefore, once the spline points are chosen, the [A]

matrix can be generated in the pre-processing stage, and {c} is the vector of coefficients

of the surface spline, while {Uspl} are the displacements of the spline points.

The surface of the CFD grid which is deformed by the surface spline is shown in

Figure 7. The red grid corresponds to zone 1 i = 1 to 141, j = 1, k = 1 to 69 ( k = 44

being the tip). The blue grid corresponds to zone 2, i = 1 to 31, j = 61, k = 1 to 69. The

spline points were chosen from the surface grid as follows. Eighty six points were chosen

from the surface of the structural finite element model shown in Figure 8. Looking at

Figure 7, it is seen that more points are needed to ensure smoothness of the surface grid.

So, additional spline points were chosen at the boundary of the surface grid. Three rows

of points running streamwise near the spanwise tip ( k = 67 to 69 ) in zone 1 and three

rows of points near the streamwise tip ( i = 29 to 31) in zone 2 were chosen as spline

points with zero displacement enforced as can be seen in Figure 9. Once the spline points

are chosen, the [A] matrix is generated and stored in the pre-processing stage.



Recalling,in theaeroelasticprocess,thedisplacementson the structural model have

been calculated. The next step is to extract the spline point displacements {Uspl} from the

global displacements {Ug}. Once {uspl} are known, the system of equations [A] {c}={Uspt}

are solved, and the coefficients of the surface spline are known.

The next step in the aeroelastic process is to deform the surface grid shown in Figure

7. This is done using the surface spline equation which is a function of the x and y

coordinates of the point. This is done easily since the coefficients of the surface spline

are now known.

Once the surface grid is deformed, the remaining grid (step 6) is deformed according

to a cosine spacing function. It is enforced such that the outer boundaries corresponding

toj =jmax in zone 1 andj -- 1 andj =jmax in zone 2, do not move. So a spacing

function that varies smoothly from 1 to 0 was is to deform the interior grid (Figure 10)

which is itself a function of the normal index j. Once the surface grid is deformed, the

remaining interior grid is deformed for each k = constant face. In order to prevent

overlapping and crossed-sides of the CFD grid, a minimum spacing criteria is chosen, and

the j = 26 face was found to meet the requirement. The points from j = 2 to 26 are

deformed in each k = constant face the same amount as the j = 1 face. Then the spacing

function is applied from j -- 26 to jmax. This is done for zone 1 and zone 2. Zone 2

indices are different, but the same deformation procedure is used. Figure 11 shows the k

= constant face. The red grid is the grid falling within the j -- 26 surface, while the blue

grid is the grid exterior to the j -- 26 surface.

Finally, a convergence criteria is chosen. The L-2 norm of the CFD equations has to

be converged and the Stabilator trailing edge tip displacement has to be converged. If

not, then the process is repeated. Each time the process is repeated will be sometimes

referred to as a cycle. Results are shown for the F/A-18 Stabilator at Mach 0.95, 1 degree

angle of attack, at sea-level.

Results

Figure 12 shows the L-2 Norm of the zone 1 and zone 2 versus iteration. The rigid

steady state solution was obtained after about 4000 iterations. The CFD grid was

deformed and the CFD code was rerun starting with the previous step's CFD solution.

Each time the grid was deformed and rerun is here referred to as a cycle. About 9 cycles

were performed in the F/A- 18 Stabilator example. The L-2 norm shows good

convergence of the CFD equations. Also, the integrated loads and moments are also

shown in Figures 13-16. The spikes in the figures corresponds to the aeroelastic cycles

where the grid is being deformed. There was not any regular interval between cycles.

The loads can be seen converging towards the final flexible Stabilator solution.

Figure 17 shows the displacements along the leading edge of the Stabilator. It can be

seen that initially after the first cycle, the Stabilator deformed its greatest amount, and

after cycle 2, it deformed its least amount. Figure 18 shows the convergence of the

Stabilator tip airfoil section. This correlates well with Figure 17 also. The displacement



of thetrailing edgeof theStabilatortip is plottedversuscyclenumberin Figure 19. It
showstheconvergenceof thedisplacements.

Therigid andfinal flexibleF/A-18 Stabilatoris shownin Figure20. Theredsolid
figureis therigid case,andtheblackgrid linesarethedeformedcase.The deflections

are scaled by a factor of 10 to help visualize the displacements.

Figure 21 shows the pressure coefficient variation on the upper surface of the rigid

and flexible Stabilator. Not a big variation can be seen by the plot, but the shock location

on the upper surface moves forward a little in the flexible Stabilator case. Figure 22

shows the Mach number variation on the upper surface of the rigid and flexible

Stabilator. In this plot, it is easier to see that there is some change between the rigid and

flexible cases, especially near the tip. There seems to be a discontinuity near the break of

the trailing edge near the tip of the Stabilator in the flexible case. This is due to the fact

that the CFD code was run sequenced, to reduce the computational time and effort.

Conclusions

The objective of this study was to create a process by which NASTRAN can be

coupled with an advanced fluid model to perform aeroelastic analysis on highly detailed

CFD and CSD models. The results show that this was achieved, but the process is

somewhat problem dependent. The pressure to force mapping is a robust procedure since

it requires only the structural node coordinates and CFD coordinates. It is independent of

the type of elements used and does not require a rectangular domain. The displacement

mapping is also good since it does not also require a rectangular domain and it's only

dependent on the coordinates of the spline points chosen. It does require a user to choose

spline points in advance and thus becomes problem dependent. Overall, the process has

been successfully demonstrated on the F/A-18 Stabilator.
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Pressure Coefficient Variation of Rigid vs Flexible Stabilator

Flexible

Rigid

i

Figure 21



Mach Number Variation of Rigid and Flexible Stabilator

Flexible

0.5 1.0 1.5 2.0

Rigid

Figure 22


